Preskočiť na obsah

Referencie k čučoriedkam

Referencie:

  1. Burdulis, D., Ivanauskas, L., Dirsė, V., Kazlauskas, S., and Ražukas, A. 2007. Study of diversity of anthocyanin composition in bilberry (Vaccinium myrtillus L.) fruits. Medicina43:971–977.PubMedGoogle Scholar
  2. Burnham, K. P., and Anderson, D. R. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd edn, p. 488. Springer-Verlag, New York.Google Scholar
  3. Close, D. C., and Mcarthur, C. 2002. Rethinking the role of many plant phenolics—protection from photodamage not herbivores? Oikos 99:166–172.CrossRefGoogle Scholar
  4. Coley, P. D., Bryant, J. P., and Chapin, R. S. 1985. Resource availability and plant anti-herbivore defence. Science 230:895–899.CrossRefPubMedGoogle Scholar
  5. Dixon, R. A., and Paiva, N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097.CrossRefPubMedGoogle Scholar
  6. Dombrowicz, E., Zadernowski, R., and Swiatek, L. 1991. Phenolic acids in leaves of Arctostaphylos uva ursi L., Vaccinium vitis idaea L. and Vaccinium myrtillus L. Pharmazie 46:680–681.PubMedGoogle Scholar
  7. Duncan, A. J., and Poppi, D. P. 2008. Nutritional ecology of grazing and browsing ruminants, pp. 89–116, in I. J. Gordon and H. H. T. Prins (eds.). The Ecology of Browsing and Grazing. Springer-Verlag, Berlin Heidelberg.CrossRefGoogle Scholar
  8. Ehlenfeldt, M. K., and Prior, R. L. 2001. Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J. Agric. Food Chem. 49:2222–2227.CrossRefPubMedGoogle Scholar
  9. Fraisse, D., Carnat, A., and Lamaison, J.-L. 1996. Composition polyphénolique de la feuille de myrtille (Polyphenolic composition of the bilberry leaf). Ann. Pharm. Fr. 54:280–283.PubMedGoogle Scholar
  10. Fritz, C., Palacios-Rojas, N., Feil, R., and Stitt, M. 2006. Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 46:533–548.CrossRefPubMedGoogle Scholar
  11. Grotewold, E. 2006. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57:761–780.CrossRefPubMedGoogle Scholar
  12. Harris, C. S., Burt, A. J., Saleem, A., Le, P. M., Martineau, L. C., Haddad, P. S., Bennett, S. A. L., and Arnason, J. T. 2007. A single HPLC-PAD-APCI/MS method for the quantitative comparison of phenolic compounds found in leaf, stem, root and fruit extracts of Vaccinium angustifoliumPhytochem. Anal. 18:161–169.CrossRefPubMedGoogle Scholar
  13. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., and Weisshaar, B. 2005. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57:155–171.CrossRefPubMedGoogle Scholar
  14. Huang, D., Ou, B., and Prior, R. L. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53:1841–1856.CrossRefPubMedGoogle Scholar
  15. Ice, C. H., and Wender, S. H. 1953. Quercetin and its glycosides in leaves of Vaccinium myrtillusJ. Am. Chem. Soc. 75:50–52.CrossRefGoogle Scholar
  16. Jaakola, L., Pirttilä, A. M., Halonen, M., and Hohtola, A. 2001. Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol. Biotechnol. 19:201–203.CrossRefPubMedGoogle Scholar
  17. Jaakola, L., Määttä, K., Pirttilä, A. M., Törrönen, R., Kärenlampi, S., and Hohtola, A. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 130:729–739.CrossRefPubMedGoogle Scholar
  18. Jaakola, L., Määttä-Riihinen, K., Kärenlampi, S., and Hohtola, A. 2004. Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728.CrossRefPubMedGoogle Scholar
  19. Jäderlund, A., Zackrisson, O., and Nilsson, M.C. 1996. Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species. J. Chem. Ecol. 22:973–986.CrossRefGoogle Scholar
  20. Jones, C. G., and Hartley, S. E. 1999. A protein competition model of phenolic allocation. Oikos 86:27–44.CrossRefGoogle Scholar
  21. Keski-Saari, S., and Julkunen-Tiitto, R. 2003. Resource allocation in different parts of juvenile mountain birch plants: effect of nitrogen supply on seedling phenolics and growth. Physiol. Plant. 118:114–117.CrossRefPubMedGoogle Scholar
  22. Koes, R., Verweij, W., and Quattrocchio, F. 2005. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10:236–242.CrossRefPubMedGoogle Scholar
  23. Lätti, A. K., Riihinen, K. R., and Kainulainen, P. S. 2008. Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56:190–196.CrossRefGoogle Scholar
  24. Lee, J., Durst, R. W., and Wrolstad, R. E. 2005. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 88:1269–1278.PubMedGoogle Scholar
  25. Lillo, C., Lea, U. S., and Ruoff, P. 2008. Nutrient depletion as a key factor for manipulating gene expression and product formation in different branches of the flavonoid pathway. Plant Cell Environ. 31:587–601.CrossRefPubMedGoogle Scholar
  26. Määttä-Riihinen, K. R., Kähkönen, M. P., Törrönen, A. R., and Heinonen, I. M. 2005. Catechins and procyanidins in berries of Vaccinium species and their antioxidant activity. J. Agric. Food Chem. 53:8485–8491.CrossRefPubMedGoogle Scholar
  27. Mäkitalo, I., Siivari, J., and Hannukkala, A. 2006. Luonnosta teolliseen tuotantoon : Kuvaus luonnontuotealan kehittämishankkeesta Lapissa 2000–2006. Maa- ja elintarviketalous, Jokioinen, 109 p.Google Scholar
  28. Mallik, A. U., and Pelissier, F. 2000. Effects of Vaccinium myrtillus in spruce regeneration: testing the notion of coevoluationary significance of allelopathy. J. Chem. Ecol. 26: 2197–2209.CrossRefGoogle Scholar
  29. Martz, F., Peltola, R., Fontanay, S., Duval, R. E., Julkunen-Tiitto, R., and Stark, S. 2009. Effect of latitude and altitude on the terpenoid and soluble phenolic composition of juniper (Juniperus communis) needles and evaluation of their antibacterial activity in the boreal zone. J. Agric. Food Chem. 57:9575–9584.CrossRefPubMedGoogle Scholar
  30. Matt, P., Krapp, A., Haake, V., Mock, H. P., and Stitt, M. 2002. Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J. 30:663–677.CrossRefPubMedGoogle Scholar
  31. Matus, J. T., Loyola, R., Vega, A., Peña-Neira, A., Bordeu, E., Arce-Johnson, P., and Alcalde, J. A. 2009. Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis viniferaJ. Exp. Bot. 60:853–867.CrossRefPubMedGoogle Scholar
  32. Palviainen, M., Finér, L., Mannerkoski, H., Piirainen, S., and Starr, M. 2005. Changes in the above- and below-ground biomass and nutrient pools of ground vegetation after clear-cutting of a mixed boreal forest. Plant Soil 275:157–167.CrossRefGoogle Scholar
  33. Rieger, G., Muller, M., Guttenberger, H., and Bucar, F. 2008. Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgarisSambucus nigra, and Vaccinium myrtillusJ. Agric. Food Chem. 56:9080–9086.CrossRefPubMedGoogle Scholar
  34. Riihinen, K., Jaakola, L., Kärenlampi, S., and Hohtola, A. 2008. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem. 110:156–160.CrossRefGoogle Scholar
  35. Salemaa, M., Derome, J., and Nöjd, P. 2008. Response of boreal forest vegetation to the fertility status of the organic layer along a climatic gradient. Boreal Environ. Res. 13: 48–66.Google Scholar
  36. Stark, S., Julkunen-Tiitto, R., Holappa, E., Mikkola, K., and Nikula, A. 2008. Concentrations of foliar quercetin in natural populations of white birch (Betula pubescens) increase with latitude. J. Chem. Ecol. 34:1382–1391.CrossRefPubMedGoogle Scholar
  37. Thiel, A. L., and Perakis, S. S. 2009. Nitrogen dynamics across silvicultural canopy gaps in young forests of western Oregon. For. Ecol. Manag. 258:273–287.CrossRefGoogle Scholar
  38. Tuomi, J., Niemelä, P., and Siren, S. 1990. The Panglossian paradigm and delayed inducible accumulation of foliar phenolics in mountain birch. Oikos 59: 399–410.CrossRefGoogle Scholar
  39. Usadel, B., Bläsing, O. E., Gibon, Y., Poree, F., Höhne, M., Günter, M., Trethewey, R., Kamlage, B., Poorter, H., and Stitt, M. 2008. Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ. 31:518–547.CrossRefPubMedGoogle Scholar
  40. Witzell, J., and Shevtsova, A. 2004. Nitrogen-induced changes in phenolics of Vaccinium myrtillus—Implications for interaction with a parasitic fungus. J. Chem. Ecol.30:1937–1956.CrossRefPubMedGoogle Scholar
  41. Witzell, J., Gref, R., and Näsholm, T. 2003. Plant-part specific and temporal variation in phenolic compounds of boreal bilberry (Vaccinium myrtillus) plants. Biochem. Syst. Ecol. 31:115–127.CrossRefGoogle Scholar
  42. Zhang, Z., Kou, X., Fugal, K., and Mclaughlin J. 2004. Comparison of HPLC methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J. Agric. Food Chem. 52: 688–691.CrossRefPubMedGoogle Scholar

Powered by BetterDocs

Komentáre